The objective of the POSITRON-NEGATRON (E±) EXPERIMENT was to measure the cosmic-ray positron and negatron spectra between 15 and 1500 MeV using a Magnetic Spectrometer which measured the charge sign and magnetic rigidity (momentum divided by charge) of charged particles by determining their deflection in a magnetic field. The instrument was developed at the California Institute of Technology.
In the figure at left we can see a basic scheme of the detector used between 1970 and 1973 (click to enlarge). It consisted of a magnetic spectrometer utilizing a 2300-gauss permanent magnet, scintillation counters, a lucite Cerenkov counter and an additional gas Cerenkov counter. An "event" (observation of a charged particle) was defined by a triple coincidence between Telescope Counter (Tl), Telescope Counter (T2), and the Lucite Cerenkov Counter (LC), and the absence of a pulse from any of the guard counters. This coincidence produced the fast-gate pulse (FG) which triggered the high voltage to the spark chambers and initiates the data read-out cycle. The two 4-gap spark chambers were used to define the particle's trajectory before and after passing through the gap of the permanent magnet.
The Lucite Cerenkov counter was designed to discriminate against upward-moving splash albedo particles and to eliminate the nucleonic component of the cosmic rays in the rigidity interval of interest. The gas Cerenkov counter (GC) was added to this improved version of the detector in order to eliminate contamination due to cosmic-ray nuclei above the LC threshold (because of the larger magnet used these particles would be indistinguishable from high-energy electrons) and to further discriminate against upward-moving particles. It contained a gas mixture of sulfur hexafluoride at 2.2 atmospheres absolute pressure. The two flat mirrors served to reflect the Cerenkov light into the phototube faces. The mirrors were constructed of 1/8-inch lucite and were aluminized on their upper surfaces. The conical mirrors were made of spun aluminum with their interior surfaces aluminized. Each of the two phototubes of the counter acted independently; a coincidence between the fast-gate pulse and the output of one phototube generated a data bit which was recorded as part of the event's data word.
The specially designed Magnet Guard Counter covered the top of the magnet and completely lined the gap volume leaving a 3-cm x 12-cm open passage. That guard counter eliminated particles which might interact or scatter in the magnet pole pieces and, together with Tl and T2, defined the acceptance cone of the detector. Additional guard counters surrounded the sides of the instrument and covered the top with the exception of the telescope aperture. These counters eliminated charged particles which entered the detector from outside the acceptance cone and might subsequently interact, producing particles which triggered the telescope counters. All guard counters were in active anti-coincidence.
The atmospheric pressure during flight was monitored by a Wallace-Tiernan aneroid barometer which was photographed, together with a clock and a thermometer, at 5-minute intervals. An additional low-pressure gauge was read out electronically.
The entire instrument, with the exception of the barometer and silver-zinc batteries, was enclosed in a pressure-tight aluminum gondola during flight.
Balloon launched on: 7/11/1971 at 1:19 utc
Launch site: Fort Churchill Airport, Manitoba, Canada
Balloon launched by: Raven Industries Inc.
Balloon manufacturer/size/composition: Zero Pressure Balloon Winzen Stratofilm 18.500.000 cuft - Natural Shape (0.6 mils) - 2 Caps (0.6 Mils.)
End of flight (L for landing time, W for last contact, otherwise termination time): 7/11/1971 at 16:11 utc
Balloon flight duration (F: time at float only, otherwise total flight time in d:days / h:hours or m:minutes - ): 11 h 42 m
Payload weight: 1767 lbs
3574If you consider this website interesting or useful, you can help me to keep it up and running with a small donation to cover the operational costs. Just the equivalent of the price of a cup of coffee helps a lot.